コンテンツにスキップ
アカウントを作成
または
サインイン
Stripe ドキュメントのロゴ
/
AI に質問する
アカウントを作成
サインイン
始める
支払い
売上
プラットフォームおよびマーケットプレイス
資金管理
開発者向けリソース
概要
Stripe Payments について
構築済みのシステムをアップグレード
支払いの分析
オンライン決済
概要ユースケースを見つけるManaged Payments を使用する
Payment Links を使用する
事前構築済みの決済ページを使用する
Elements を使用したカスタム統合の構築
アプリ内実装を構築
決済手段
決済手段を追加
決済手段を管理
Link による購入の迅速化
支払いインターフェイス
Payment Links
Checkout
Web Elements
アプリ内決済
決済シナリオ
複数の通貨を扱う
カスタムの決済フロー
柔軟なアクワイアリング
オーケストレーション
店頭支払い
端末
決済にとどまらない機能
会社を設立する
仮想通貨
エージェント型ワークフロー
Financial Connections
Climate
不正利用について
Radar の不正防止
    概要
    導入方法
    Radar セッション
    リスク評価
    複数の決済代行業者の Rader スコア
    リスク設定
    審査
    リスト
    ルール
    地域固有の決済手段
    Radar アナリティクス
    Radar for Platforms
不審請求の申請の管理
本人確認
ホーム支払いRadar fraud protection

注

このページはまだ日本語ではご利用いただけません。より多くの言語で文書が閲覧できるように現在取り組んでいます。準備が整い次第、翻訳版を提供いたしますので、もう少しお待ちください。

Radar for local payment methods非公開プレビュー

Extend your fraud prevention tools to analyze other payment methods.

Radar for local payment methods allows you to extend the risk evaluation capabilities of Radar to payments that use other payment methods. This allows you to offer your customers more payment choice while continuing to protect your business from fraud.

Supported features

Radar for local payment methods includes the following fraud prevention features that work across all supported payment methods:

  • Default block and allow lists: Automatically block or allow transactions based on email address, IP address, email domain, and other key attributes.
  • Custom rules: Create tailored fraud prevention logic using more than 100 available attributes.
  • Rule backtesting: Test changes against historical data before implementing them.
  • Radar analytics center: View consolidated fraud and performance metrics across all of your payment volume.

The private preview release supports Klarna.

Availability

Radar for Fraud Teams users can request access to the Radar for local payment methods private preview. When enabled, your existing Radar rules automatically apply to supported local payment methods. You can also create new payment method-specific rules using the :payment_method_type: attribute. For example, you can write a rule that targets Klarna payments by creating the following rule:

Block if :payment_method_type: = 'klarna' and :dispute_count_on_ip_weekly: > 3 and :amount_in_usd: > 500

Request early access

Expand fraud protection with rules

Rules and lists complement machine learning by allowing you to both broaden your risk strategy across payment methods and focus precise risk mitigation where needed.

Extend protection across your business

  • Instantly block fraudulent actors across all supported payment methods. For example, if a fraudster attempts a fraudulent chargeback on a card transaction, you can immediately add their email to a block list, preventing them from switching to another payment method, such as Klarna, to continue their attack.

  • Apply insights from your card transactions to protect new local payment method transactions without waiting to accumulate fraud data.

Focus protection on unique risks

Address fraud and risk patterns unique to your business model, industry, or customer base.

  • Block transactions from countries where you don’t ship or operate.
  • Set more restrictive rules in new markets.
  • Enforce geographic restrictions required by your business or partnerships.
  • Flag customers making unusually frequent purchases across any payment method.
  • Block high-value transactions that exceed your typical order values.
  • Detect suspicious patterns signaling account takeover.
  • Limit certain payment methods for high-value or high-risk products.
  • Create policies unique to your business.

Adapt to your business patterns

  • Block a newly identified fraud pattern in minutes.
  • Test different rule configurations to find your tolerance.
  • Modify rules for high-traffic periods like Black Friday or holiday seasons.
  • Create sophisticated rule chains that escalate from allowing to reviewing to blocking based on multiple factors.

Address payment method diversity

Local payment methods vary significantly in their risk profiles and fraud vectors either individually or as a payment method family (for example, a bank debit, Buy Now, Pay Later (BNPL), or a digital wallet).

Higher-risk payment methods

Some payment method profiles associated with higher risk include:

  • Payment methods that support customer disputes have higher risk, especially when dispute resolution favors buyers.
  • Payment methods that support multiple installments might be at risk of a fraudster receiving goods but only paying the first installment.
  • Asynchronous payment methods risk double refunding when customers attempt to manipulate both a bank and a business into issuing refunds.

You can create stricter rules for high risk payment methods to help lower your risk.

Lower-risk payment methods

Some payment method profiles associated with lower risk include:

  • Payment methods that don’t support customer-initiated disputes make it more difficult for a fraudster to get access to a good or service without paying for it.
  • Payment methods that require strong customer authentication (SCA) increase friction for fraudsters.
  • Real-time payment methods can reduce the fraud window.

For lower-risk payment methods, you can create rules that reduce friction for legitimate customers.

このページはお役に立ちましたか。
はいいいえ
  • お困りのことがございましたら 、サポートにお問い合わせください。
  • 早期アクセスプログラムにご参加ください。
  • 変更ログをご覧ください。
  • ご不明な点がございましたら、お問い合わせください。
  • LLM ですか?llms.txt を読んでください。
  • Powered by Markdoc